SECTION 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY

1.1 PRODUCT IDENTIFIER: MaxWool, MaxBulk, MaxBlok, LT, HP, HT, HTZ, MT, MaxPly

This product contains Refractory Ceramic Fibres (RCF)/Alumino-silicate wools (ASW) (RCF/ASW).

Index Number: 650-017-00-8 of Annex VI
CAS Number: 142844-00-6
CAS Name: Refractories, fibres, alumino-silicate.
Registration Number: 01-2119458050-50-0005

1.2 RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST:

Restricted to “professional users”, for application as thermal insulation, Heat shields and containment, gaskets and expansion joints at temperatures up to 1400°C in industrial and domestic furnaces, kilns, boilers and other processes equipment. For application in aerospace and automotive industries. Products are not intended for direct sale to the general public.

- Primary Use: Manufacture of fibre (refers to the initial production of the fibre and is therefore not relevant to the downstream user).

- Secondary Use: Conversion in to wet and dry mixtures and articles (refer to section 8).

- Tertiary Use: Installation, removal (industrial and professional) / Maintenance and service life (industrial and professional) (refer to section 8).

Uses Advised Against: Spraying of the product.

1.3 MANUFACTURER/SUPPLIER: NUTEC EUROPE, S.A. DE C.V.
Eitua Industrialdea, 71A
48240 Berriz, Vizcaya - Spain
Phone: +34 946 203 700
Fax: +34 946 827 060
http://www.nuteceurope.com

1.4 EMERGENCY TELEPHONE NUMBER:
Tel: +34 946 203 700
Language: English
Opening hours: Only available during office hours
SECTION 2. HAZARDS IDENTIFICATION

2.1 CLASSIFICATION OF THE SUBSTANCE/MIXTURE

2.1.1. Classification according to regulation (ec) no 1272/2008

Under the CLP-Regulation (classification, labelling and packaging of substances and mixtures) RCF/ASW has been classified as a 1B carcinogen ("presumed to have carcinogenic potential for humans, classification is largely based on animal evidence").

2.1.2 Additional information

The International Agency for Research on Cancer (IARC) reaffirmed in 2001 that group 2B ("possibly carcinogenic to humans") remains the appropriate classification for RCF/ASW.

In accordance with 1st adaptation to Technical Progress of Regulation (EC) No 1272/2008 as published 10th August 2009, the classification as "irritant" has been removed for all types of manmade vitreous fibres (MMVF).

2.2 LABEL ELEMENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Classification</th>
<th>Hazard pictogram & Symbol</th>
<th>H Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory ceramic fibres (Alumino-silicate wools)</td>
<td>(EC) No. 1272/2008</td>
<td>GHS 08</td>
<td>H350i</td>
</tr>
</tbody>
</table>

Classification

Hazard pictogram:
GHS 08

Signal Word:
Danger

Hazard Statements:
May cause cancer by inhalation (H350i)

Precautionary statements:
Do not handle until all safety instructions have been read and understood. (P202)
Use personal protective equipment as required. (P281)

2.3 OTHER HAZARDS WHICH DO NOT RESULT IN CLASSIFICATION:

Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure.
These effects are usually temporary.
SECTION 3. COMPOSITION/ INFORMATION ON INGREDIENTS

3.1 SUBSTANCES
NUTEC HT, HTZ, HP and LT fiber in the form of bulk, blanket and blanket modules are made of Refractory Ceramic Fibres (Refractories, Fibres, aluminosilicate)

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>% by weight</th>
<th>CAS NUMBER</th>
<th>Index number in CLP Annex VI</th>
<th>REACH Registration Number</th>
<th>Hazard Classification according to CLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory ceramic fibres (Alumino-silicate wools)</td>
<td>100</td>
<td>142844 -00 -6</td>
<td>650-017-00-8</td>
<td>01-2119458050-50-0005</td>
<td>Carc 1B (H350i)</td>
</tr>
</tbody>
</table>

3.2 COMPOSITION ADDITIONAL INFORMATION
COMPOSITION:
CAS definition: Chemical composition of Refractory Ceramic Fibres (RCF/ASW): SiO₂ 45-60% - Al₂O₃ 28-55%, ZrO₂<18%
None of the components are radioactive under the terms of European Directive Euratom 96/29

SECTION 4. FIRST AID MEASURES

4.1 SKIN
Handling of this material may generate mild mechanical temporary skin irritation. If this occurs, rinse affected areas with water and wash gently. Do not rub or scratch exposed skin.

4.2 EYES
In case of eye contact flush abundantly with water; have eye bath available. Do not rub eyes.

4.3 NOSE AND THROAT
If these become irritated move to a dust free area, drink water and blow nose.

4.4 FIRST AID ADDITIONAL INFORMATION
If symptoms persist, seek medical advice.
SECTION 5. FIREFIGHTING MEASURES

5.1 EXTINGUISHING MEDIA.
Use extinguishing agent suitable for surrounding combustible materials.

5.2 SPECIAL HAZARDS ARISING FROM THE SUBSTANCE OR MIXTURE
Non-combustible products,

5.3 ADVICE FOR FIREFIGHTERS
Packaging and surrounding materials may be combustible.

SECTION 6. ACCIDENTAL RELEASE MEASURES

6.1 PERSONAL PRECAUTIONS, PROTECTIVE EQUIPMENT AND EMERGENCY PROCEDURES
• Where abnormally high dust concentrations occur, provide workers with appropriate protective equipment as detailed in section 8.
• Restrict access to the area to a minimum number of workers required.
• Restore the situation to normal as quickly as possible.

6.2 ENVIRONMENTAL PRECAUTIONS
• Prevent further dust dispersion for example by dampening the materials
• Do not flush spillage to drain.
• Check for local regulations, which may apply.

6.3 METHODS AND MATERIALS FOR CONTAINMENT AND CLEAN UP
• Pick up large pieces and use a vacuum cleaner fitted with a high efficiency filter (HEPA)
• If brushing is used, ensure that the area is wetted down first.
• Do not use compressed air for clean up.
• Do not allow to be windblown.

6.4 REFERENCE TO OTHER SECTIONS
For further information, please refer to sections 7 and 8

SECTION 7. HANDLING AND STORAGE

7.1 PRECAUTIONS FOR SAFE HANDLING
• Handling can be a source of dust emission and therefore the processes should be designed to limit the amount of handling. Whenever possible, handling should be carried out under controlled conditions (i.e., using dust exhaust system).
• Regular good housekeeping will minimize secondary dust dispersal.

7.2 CONDITIONS FOR SAFE STORAGE INCLUDING ANY INCOMPATIBILITIES
• Store in original packaging in dry area.
• Always use sealed and visibly labeled containers.
• Avoid damaging containers.
• Reduce dust emission during unpacking.
• Emptied containers, which may contain debris, should be cleaned before disposal or recycling.
• Recyclable cardboard and/or plastic films are recommended for packaging.

7.3 SPECIFIC END USE
• The main application of these products is as thermal insulation. Use of the products is restricted to “professional users”.
• Please refer to section 8 and the relevant exposure scenario.

SECTION 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1 CONTROL PARAMETERS
Industrial hygiene standards and occupational exposure limits vary between countries and local jurisdictions. Check which exposure levels apply to your facility and comply with local regulations. If no regulatory dust or other standards apply, a qualified industrial hygienist can assist with a specific workplace evaluation including recommendations for respiratory protection. Examples of national OELs (November 2014) are given in the table below. Additional references and/or updates can be found on the following websites:

http://www.dguv.de/ifa/en/gestis/limit_values

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>RCF (fibre/ml)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.5</td>
<td>Grenzwerteverordnung</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.5</td>
<td>Valeurs limites d'exposition professionnelle – VLEP/ Grenswaarden voor beroepsmatige blootstelling – GWBB</td>
</tr>
<tr>
<td>Denmark</td>
<td>1.0</td>
<td>Grænseværdier for stoffer og materialer</td>
</tr>
<tr>
<td>Finland</td>
<td>0.2</td>
<td>Finnish Ministry of Social Affairs and Health</td>
</tr>
</tbody>
</table>
Note:
*8-hr time weighted average concentrations of airborne respirable fibres measured using the conventional membrane filter method.

**In Germany the OEL (TRK) approach for CMR has been replaced by a combination of 2 new concepts: Assessment of risk and acceptance of risk. BekGS 910 gives a tolerated limit of 0.1 f/ml for RCF. TRGS 558 specifies however that a 2-fold uncertainty factor exists related to the quality of scientific data on which these risk levels have been calculated. This implies that the tolerated risk level ranges from 0.05 F/ml to 0.20 f/ml.

***Source of OEL is detailed in section 15

8.1.1 DNEL/DMEL (Derived No-Effect Level/Derived Minimal Effect Level)
The DNEL cited in the long term exposure section above is based on the incidence of lung tumours (nonsignificant at all treatment levels) in a multi-dose rat study reported by Mast et al (Inhalation Toxicology, 1995, 7(4), 469-502) which demonstrates a NOAEL of 162 f/ml and leads to the calculated endpoint-specific DNEL of 1.62 f/ml. SCOEL have recommended an OEL for RCF of 0.3 f/ml based on measured lung function in exposed workers. Assuming 45 years exposure, the average cumulative exposures of 147.9 (all workers in the high exposure group) and 184.8 fmo/ml (workers 60+ years of age in the high exposure group) - equivalent to average fibre concentrations of 0.27 and 0.34 f/ml respectively- were considered as no observed adverse effect levels for lung function and SCOEL therefore proposed an OEL of 0.3 f/ml. This is considerably lower than the calculated DNEL value.

8.1.2 Recommended Monitoring Programmes
France has a monitoring programme in line with test method reference number XP X43-269 dated March 2002, which is used to check for compliance with the OEL of 0.1 f/ml.

United Kingdom: MDHS 59 specific for MMVF: “Man-made mineral fibre - Airborne number concentration by phase-contrast light microscopy” and MDHS 14/4 “General methods for sampling and gravimetric analysis of respirable and inhalable dust”

Germany recommends following the rules as laid out in TRGS 402 and describes applicable sampling / analytical methods in BGI 505-31 and BGI 505-46. WHO-EURO method: Determination of airborne fibre number concentrations; A
recommended method, by phase-contrast optical microscopy (membrane filter method); World Health Organisation

8.2 EXPOSURE CONTROLS

8.2.1 Appropriate engineering controls
Review your application(s) and assess situations with the potential for dust release.

- Where practical, enclose dust sources and provide dust extraction at source.
- Designate work areas and restrict access to informed and trained workers.
- Use operating procedures that will limit dust production and exposure of workers.
- Keep the workplace clean. Use a vacuum cleaner fitted with a HEPA filter; avoid using brooms and compressed
air for clean up.

If necessary, consult an industrial hygienist to design workplace controls and practices.
The use of products specially tailored to your application(s) will help to control dust. Some products can be delivered
ready for use to avoid further cutting or machining. Some could be pre-treated or packaged to minimise or avoid dust
release during handling.
Consult your supplier for further details.

Table of Uses and Risk Management Measures (RMM):

<table>
<thead>
<tr>
<th>Intended use</th>
<th>RMM - Hierarchy of Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary use – Conversion into wet and dry mixtures and articles.</td>
<td>- Where it is practical to do so, automatically feed RCF/ASW in to the process</td>
</tr>
<tr>
<td></td>
<td>- Where practical to do so, segregate dry and wet processing</td>
</tr>
<tr>
<td></td>
<td>- Enclose the process where practically possible.</td>
</tr>
<tr>
<td></td>
<td>- Where practical to do so, segregate machine areas and restrict access to operators involved in the process.</td>
</tr>
<tr>
<td></td>
<td>- Enclose Machines as far as practically possible.</td>
</tr>
<tr>
<td></td>
<td>- Install LEV where possible, when machine finishing, handling, compressing and hand cutting to remove dust at source</td>
</tr>
<tr>
<td></td>
<td>- Employ experienced personnel – trained in the correct use of fibrous products</td>
</tr>
<tr>
<td></td>
<td>- PPE and RPE used for all dusty tasks</td>
</tr>
<tr>
<td></td>
<td>- Provide vacuum cleaner connection point to central system where practical or use a portable HEPA vacuum</td>
</tr>
<tr>
<td></td>
<td>- Regular clean up – using a wet scrubbing unit where practically possible and in general a HEPA vacuum should be used.</td>
</tr>
<tr>
<td></td>
<td>- Dry brushing and use of compressed air should be prohibited</td>
</tr>
<tr>
<td></td>
<td>- Waste materials to be contained at source, labelled and stored separately for disposal or recycling.</td>
</tr>
</tbody>
</table>

Reference: ES 2
Intended use

Tertiary use - Maintenance and service life (Industrial or professional use)

- Process: Small scale repairs involving removal and installation of RCF/ASW products. Use of the product in an enclosed system, where there is occasional control access or no access.

Reference: ES 3

RMM - Hierarchy of Controls

- Use pre-cut, pre-sized pieces where practically possible.
- Allow access only to trained (authorized) operators.
- Where practically possible, perform all hand cutting in a segregated area, on a down draft bench.
- Clean up work area regularly during the shift using a HEPA equipped vacuum cleaner.
- Prohibit use of dry brushing and compressed air cleaning.
- Bag and seal waste immediately at source.
- Use PPE and RPE appropriate to task.
- Employ good hygiene practices.

Tertiary use - Installation and removal (industrial or professional).

- Large scale removal and installation of RCF/ASW from industrial processes.
- Large scale removal and installation by professionals.

Reference: ES 4

RMM - Hierarchy of Controls

- Where practically possible enclose or segregate the work area.
- Allow only authorized personnel.
- Pre-wet insulation prior to removal where practically possible.
- Where practically possible use a water lance for removal or vacuum-truck.
- Use down draft bench for hand cutting products.
- Cover pre-cut section during transport and storage to prevent secondary exposure.
- Where practically possible provide multiple vacuum hoses for convenient cleanup of spillage or use portable HEPA filtered vacuums.
- Bag waste materials immediately at source
- Prohibit use of dry brushing and or compressed air cleaning.
- Experienced personnel only
- Use appropriate PPE and RPE appropriate to expected concentrations

8.2.2 Personal Protective Equipment

Skin Protection

Wear industrial leather gloves and work clothes, which are loose fitting at the neck and wrists. Soiled clothes should be cleaned to remove excess dust before being taken off (e.g. use vacuum cleaner, not compressed air). Each worker should be provided with two lockers in an appropriate changing and washing area. It is good hygiene practice to ensure work clothes are washed separately by the employer. Work clothes should not be taken home.

Eye Protection

As necessary, wear goggles or safety glasses with side shields
Respiratory Protection

For dust concentrations below the applicable exposure limit value, RPE is not required but FFP2 respirators should be provided for use on a voluntary basis.

For short term operations where excursions are less than ten times the applicable limit value, use FFP3 respirators.

In case of higher concentrations or where the concentration is not known, please seek advice from your company and/or your supplier.

You may also refer to the ECFIA code of practice available on the ECFIA’s web site: www.ecfia.eu

Information and Training of workers

This should include:

- The applications involving RCF/ASW-containing products;
- The potential risk to health resulting from the exposure to fibrous dust;
- The requirements regarding smoking, eating and drinking at the workplace;
- The requirements for protective equipment and clothing;
- The good working practices to limit dust release;
- The proper use of protective equipment.

8.2.3 Environmental Exposure Controls

RCF/ASW is inorganic, inert and stable and it is not soluble in water (solubility <1mg/litre) and as such does not pose a detrimental effect on the environment.

Processes involving the manufacturing or use of RCF/ASW should be filtered to minimise fibre emissions to air.

Waste RCF/ASW should be stored in closed containers and placed in to deep landfills, giving therefore little opportunity for release.

General good practice for spills and waste is to prevent products from being wind blown, by covering and damping the waste materials. Contain spillages to prevent access to drain.

Refer to local, national or European applicable environmental standards for release to air water and soil.

For waste, refer to section 13

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 INFORMATION ON BASIC PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>APPEARANCE</th>
<th>White fiber/blanket</th>
<th>PARTITION COEFFICIENT</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOILING POINT</td>
<td>Not applicable</td>
<td>ODOUR</td>
<td>None</td>
</tr>
<tr>
<td>FLASH POINT</td>
<td>Not applicable</td>
<td>MELTING POINT</td>
<td>1760°C(3200°F)</td>
</tr>
</tbody>
</table>
SAFETY DATA SHEET (EUROPEAN)

AUTOFLAMMABILITY Not applicable FLAMMABILITY Not applicable
OXIDISING PROPERTIES Not applicable EXPLOSIVE PROPERTIES Not applicable
RELATIVE DENSITY 50-240 kg/m³ VAPOUR PRESSURE Not applicable
SOLUBILITY Less than 1 mg/l pH Not applicable

LENGTH WEIGHTED GEOMETRIC MEAN DIAMETER OF FIBRES CONTAINED IN THE PRODUCT:
1,4 – 3 μm

9.2 OTHER SAFETY INFORMATION
These fibres are dense materials and so will settle rapidly from both air and liquid

SECTION 10. STABILITY AND REACTIVITY

10.1 REACTIVITY
RCF/ASW is stable and non reactive.

10.2 CHEMICAL STABILITY
RCF/ASW is inorganic, stable and inert

10.3 POSSIBILITY OF HAZARDOUS REACTIONS
None

10.4 CONDITIONS TO AVOID
Please refer to handling and storage advice in Section 7

10.5 INCOMPATIBLE MATERIALS
None

10.6 HAZARDOUS DECOMPOSITION PRODUCTS
Upon heating above 900°C for sustained periods, this amorphous material can begin to transform to mixtures of crystalline phases. For further information, please refer to Section 16.

SECTION 11. TOXICOLOGICAL INFORMATION

TOXICOKINETICS, METABOLISM AND DISTRIBUTION

11.1 BASIC TOXICOKINETIC
Exposure is predominantly by inhalation or ingestion. Man made vitreous fibres of a similar size to RCF/ASW have not been shown to migrate from the lung and/or gut and do not become located in other parts of the body.

11.2 HUMAN TOXICOLOGICAL DATA
In order to determine possible human health effects following RCF exposure, the University of Cincinnati has been conducting medical surveillance studies on RCF workers in the U.S. The Institute of Occupational Medicine (IOM) has conducted medical surveillance studies on RCF workers in European manufacturing facilities.

SDS No. MW0001-EU Rev 3
Date of Last Revision: Oct/10/2016
Pulmonary morbidity studies among production workers in Europe and U.S.A. have demonstrated an absence of interstitial fibrosis. In the European study a reduction of lung capacity among smokers has been identified, however, based on the latest results in the U.S.A. study this reduction is no longer statistically significant.

A statistically significant correlation between pleural plaques and cumulative RCF exposure was evidenced in the USA longitudinal study.

The U.S.A. mortality study did not show evidence of increased lung tumour development either in the lung parenchyma or in the pleura.

11.3 INFORMATION ON TOXICOLOGICAL EFFECTS

- **Acute toxicity: short term inhalation**
 No data available: Short term tests have been undertaken to determine fibre (bio) solubility rather than toxicity; repeat dose inhalation tests have been undertaken to determine chronic toxicity and carcinogenicity.

- **Acute toxicity: oral**
 No data available: Repeated dose studies have been carried out using gavage. No effect was found.

- **Skin corrosion/irritation:**
 Not a chemical irritant according to test method OECD no. 404.

- **Serious eye damage/irritation:**
 Not possible to obtain acute toxicity information due to the nature of the substance.

- **Respiratory or skin sensitization:**
 No evidence from human epidemiological studies of any respiratory or skin sensitization potential.

- **Germ cell mutagenicity:**
 Method: In vitro micronucleus test
 Species: Hamster (CHO)
 Dose: 1-35 mg/ml
 Routes of administration: In suspension
 Results: Negative

- **Carcinogenicity**
 Method: Inhalation. Multi-dose
 Species: Rat,
 Dose: 3 mg/m³, 9 mg/m³ and 16 mg/m³
 Routes of administration: Nose only inhalation
 Results: Fibrosis just reached significant levels at 16 and 9 mg/m³ but not at 3 mg/m³. None of the parenchymal tumour incidences were higher than the historical control values for this strain of animal.

 Method: Inhalation. Single dose
Species: Rat
Dose: 30 mg/m3
Routes of administration: Nose only inhalation

Results: Rats were exposed to a single concentration of 200 WHO fibres/ml specially prepared RCF for 24 months. High incidence of exposure-related pulmonary neoplasms (bronchoalveolar adenomas and carcinomas) were observed. A small number of mesotheliomas were observed in each of the fibre exposure groups (Mast et al 1995a).

Method: Inhalation. Single dose

Species: Hamster
Dose: 30 mg/m3
Routes of administration: Nose only inhalation

Results: Hamsters were exposed to a single concentration of 260 WHO fibres/ml specially prepared RCF for 18 months and developed lung fibrosis, a significant number of pleural mesotheliomas (42/102) but no primary lung tumours (McConnell et al 1995).

Method: Inhalation. Single dose

Species: Rat
Dose: RCF1: 130 F/ml and 50 mg/m3 (25% of non fibrous particles)
RCF1a: 125 F/ml and 26 mg/m3 (2% of non fibrous particles)
Routes of administration: Nose only inhalation

Results: Rats were exposed to RCF1 and RCF1a for 3 weeks. The objective of the study was to compare lung retention and biological effects of the original RCF1 compared to RCF1a. The main difference of these 2 samples was the non fibrous particle content of respectively 25% versus 2%. The post treatment observation was 12 months. Alveolar clearance was barely retarded after RCF1A exposure. After RCF1 exposure however, a severe retardation of clearance was observed. (Bellmann et al 2001) (Source: publication)

After intraperitoneal injection of ceramic fibres into rats in three experiments (Smith et al 1987, Pott et al 1987, Davis et al 1984), mesotheliomas were found in the abdominal cavity 6 in two studies, while the third report (Pott et al 1987) had incomplete histopathology. Only a few mesotheliomas were found in the abdominal cavity of hamsters after intraperitoneal injection in one experiment (Smith et al 1987). However, the ceramic fibres tested were of relatively large diameter. When rats and hamsters were exposed via intraperitoneal injection, tumour incidence was related to fibre length and dose (Smith et al 1987, Pott et al 1987, Miller et al 1999, Pott et al 1989).

(From SCOEL publication (EU Scientific Committee on Occupational Exposure Limits) publication SCOEL/SUM/165, October 2010).

- **Reproductive toxicity:**

Method: Gavage

Species: Rat
Dose: 250mg/kg/day
Routes of administration: Oral

Results: No effects were seen in an OECD 421 screening study. There are no reports of any reproductive toxic effects of mineral fibres. Exposure to these fibres is via inhalation and effects seen are in the lung. Clearance of fibres is via the gut and the faeces, so exposure of the reproductive organs is extremely unlikely.

- STOT-Single exposure; NA
- STOT-Repeated exposure; NA
- Aspiration hazard: NA

Experimental Studies for Mineral Wools

Animal inhalation studies on mineral wools showed neither pulmonary fibrosis nor lung cancer nor mesothelioma. Intratracheal and intraperitoneal injection studies did not show any disease except those involving selected fine glass fibres for special uses or experimental rock wools.

Irritant Properties

Negative results have been obtained in animal studies (EU method B4) for skin irritation. Inhalation exposures using the nose only route produce simultaneous heavy exposures to the eyes, but no reports of excess eye irritation exist. Animals exposed by inhalation similarly show no evidence of respiratory tract irritation.

Human data confirm that only mechanical irritation, resulting in itching, occurs in humans. Screening at manufacturers’ plants in the UK has failed to show any human cases of skin conditions related to fibre exposure.

SECTION 12. ECOLOGICAL INFORMATION

12.1 TOXICITY

These products are insoluble materials that remain stable overtime and are chemically identical to inorganic compounds found in the soil and sediment; they remain inert in the natural environment.

No adverse effects of this material on the environment are anticipated.

12.2 PERSISTENCE AND DEGRADABILITY

Not established

12.3 BIOACCUMULATIVE POTENTIAL.

Not established

12.4 MOBILITY IN SOIL

No information available

12.5 RESULTS OF PBT AND vPvB ASSESSMENT

This substance is not considered to be persistent, bioaccumulating nor toxic (PBT).

This substance is not considered to be very persistent and very bioaccumulative (vPvB).

12.6 OTHER ADVERSE EFFECTS
SECTION 13. DISPOSAL CONSIDERATIONS

13.1 WASTE TREATMENT METHODS
Waste containing > 0.1% RCF/ASW is categorised as a stable non-reactive hazardous waste (please refer to the European List Decision N° 2000/532/EC as modified), which can generally be disposed of at landfill sites licensed for this purpose.

Unless wetted, such a waste is normally dusty and so should be properly sealed in clearly labelled containers for disposal. At some authorised disposal sites, dusty wastes may be treated differently in order to ensure they are dealt with promptly to avoid them being windblown.

Please refer to the European list (Decision no 2000/532/CE as modified) to identify your appropriate European Waste Code (EWC) and ensure national and or regional regulation are complied with.

13.2 ADDITIONAL INFORMATION
When disposing of waste and assigning European Waste Code (EWC) any possible contamination during use will need to be considered and expert guidance sought as necessary.

SECTION 14. TRANSPORT INFORMATION

TRANSPORT

14.1 UN number
Not Applicable

14.2 UN proper shipping name
Not Applicable

14.3 Transport hazard class(es)
Not Applicable

14.4 Packing group
Not Applicable

14.5 Environmental hazards
Not Applicable

14.6 Special precautions for user
Not Applicable

14.7 Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code
Not Applicable
SECTION 15. REGULATORY INFORMATION

15.1 SAFETY, HEALTH AND ENVIRONMENT REGULATIONS/LEGISLATION SPECIFIC FOR THE SUBSTANCES OR MIXTURES

EU regulations:

- Regulation (EC) No 1907/2006 dated 18th December 2006 on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
- Annex of Regulation(EU)2015/830

Integration of RCF/ASW in to ANNEXE XV of the REACH Regulation:

RCF are classified as a carcinogenic substance CLP 1B (See section 15 above). On the 13th of January 2010, ECHA updated the candidate list for authorization (annexes XV of the REACH regulation) and added 14 new substances in this list including aluminosilicate refractory ceramic fibres and zirconia aluminosilicate refractory ceramic fibres.

As a consequence, EU (European Union) or EEA (European Economical Area) suppliers of articles which contain aluminosilicate refractory ceramic fibres and zirconia aluminosilicate refractory ceramic fibres in a concentration above 0.1% (w/w) have to provide sufficient information, available to them, to their customers or upon requests to a consumer within 45 days of the receipt of the request. This information must ensure safe use of the article and as minimum contains the name of the substance.

Restriction on Marketing of RCF/ASW

Marketing and use of RCF/ASW is controlled by Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations as modified (21st amending, Directive 2001/41/EC, 19 June 2001) and is restricted to professional use only.

15.2 CHEMICAL SAFETY ASSESSMENT

A Chemical Safety Assessment has been carried out for RCF/ASW and CSR can be provided on request.

SECTION 16. OTHER INFORMATION

USEFUL REFERENCES (the directives which are cited must be considered in their amended version)

- Working with High Temperature Insulation wools 2006;
PRECAUTIONARY MEASURES

Additional information and precautions to be considered upon removal of after service material

As produced, all Refractory Ceramic Fibres are vitreous (glassy) materials which, upon continued exposure to elevated temperatures (above 900°C), may devitrify. The occurrence and extent of crystalline phase formation is dependent on the duration and temperature of exposure, fibre chemistry and/or the presence of fluxing agents. The presence of crystalline phases can be confirmed only through laboratory analysis of the "hot-face" fibre.

IARC's evaluation of crystalline silica states "Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)" and additionally mentioned, "in making the overall evaluation, the Working Group noted that carcinogenicity in humans was not detected in all industrial circumstances studied..."

As only, a thin layer of the insulation (hot face side) is exposed to high temperatures, respirable dust generated during removal operations does not contain detectable levels of crystalline silica (CS).

In applications where the material is heat soaked, duration of heat exposure is normally short and a significant devitrification allowing CS to build up does not occur. This is the case for waste mould casting for instance.

Toxicological evaluation of the effect of the presence of CS in artificially heated RCF/ASW material has not shown any increased toxicity in vitro.

The lack of toxicological effects may be explained by the following factors;

Increased brittleness of fibres after service life, favours fast fibre translocation through macrophage. Micro crystals, including crystalline silica, are embedded in the glass structure of the fibre and are therefore not biologically available.

The IARC evaluation as provided in Monograph 68 is not relevant as CS is not biologically available in after-service RCF/ASW.

High concentrations of fibres and other dusts may be generated when after-service products are mechanically disturbed during operations such as wrecking. Therefore ECFIA recommends:

a) control measures are taken to reduce dust emissions;
b) all personnel directly involved wear an appropriate respirator to minimise exposure; and

c) Compliance with local regulatory limits.

CARE PROGRAMME

ECFIA, representing the high temperature insulation wool (HTIW) industry, has undertaken an extensive industrial hygiene programme to provide assistance to the users of all products containing HTIW.

The objectives are twofold:

• To monitor workplace dust concentrations at both manufacturers' and customers' premises.
• To document manufacturing and use of RCF products from an industrial hygiene perspective in order to establish appropriate recommendations to reduce exposures.

The initial results of the programme have been published. If you wish to participate in the CARE programme, contact ECFIA or your supplier.

USES ADVISED AGAINST
Spraying: ECFIA recommends that this fibre should not be used for spraying.

Websites
For more information, connect to:
The Nutec Europe website: (http://www.nuteceurope.com/)
Or ECFIA’s website: (http://www.ecfia.eu)

Revision Summary
Amendments to sections 2, 3, 4, 5, 6, 8, 9, 12, 14, 15 and 16 to comply with new guidelines

NOTICE:
The information presented here in is based on data considered to be accurate as of the date of preparation of this Safety Data Sheet. However, no warranty or representation, express or implied, is made as to the accuracy or completeness of the foregoing data and safety information, nor is any authorisation given or implied to practice any patented invention without a licence. In addition, no responsibility can be assumed by the vendor for any damage or injury resulting from abnormal use, from any failure to adhere to recommended practices, or from any hazards inherent in the nature of the product.